|
Вчитување...
Вчитување...
|
|
Well this is beyond my level
I would love to see solution for this though
----
Вчитување...
Вчитување...
|
|
Probably 15°
----
''Everywhere where i am absent, they commit nothing but follies''
~Napoleon
Вчитување...
Вчитување...
|
Casper Корисникот е избришан |
Casper Корисникот е избришан
Вчитување...
Вчитување...
|
|
Напишано од boywind2, 08.12.2018 at 11:24
It's 15°.
----
Attenzione! Allontanarsi dalla linea gialla![/center]
Вчитување...
Вчитување...
|
|
Напишано од boywind2, 08.12.2018 at 11:24
X=20°
----
Вчитување...
Вчитување...
|
|
Secondary school geometry..
x=20°
Tell me if you want me to post solution.
(terrible handwriting)
Вчитување...
Вчитување...
|
|
Not sure how this can be classified as 'math'.
Вчитување...
Вчитување...
|
|
Напишано од Oleg, 08.12.2018 at 17:12
Secondary school geometry..
x=20°
Tell me if you want me to post solution.
(terrible handwriting)
Post please
----
Вчитување...
Вчитување...
|
|
This is a variation on the 80-80-20 triangle problem AKA the langley adventitious angles problem (more specifically the 70-60 variation)
https://en.wikipedia.org/wiki/Langley%E2%80%99s_Adventitious_Angles
I uploaded my solution
Вчитување...
Вчитување...
|
|
Thank you.
----
Вчитување...
Вчитување...
|
|
Напишано од Rock Lee, 08.12.2018 at 18:25
Thank you but that's legit method in math world? In school if you use more than one assistant building (draw line) in same section you get zero points in the chapter.
Considering this is one of those famous math challenges, you're allowed to do so.
Вчитување...
Вчитување...
|
|
Considering this is one of those famous math challenges, you're allowed to do so.
Nice. At math world too many draw lose theory value or it's just law made to get students to stay on topic?
----
Вчитување...
Вчитување...
|
|
Напишано од Rock Lee, 08.12.2018 at 18:31
Considering this is one of those famous math challenges, you're allowed to do so.
Nice. At math world too many draw lose theory value or it's just law made to get students to stay on topic?
I'm not sure, I'm not really a geometry guys. Aside from taking calc 3, I dont really remember having to draw anything spectacular.
Вчитување...
Вчитување...
|
|
This is a variation on the 80-80-20 triangle problem AKA the langley adventitious angles problem (more specifically the 70-60 variation)
https://en.wikipedia.org/wiki/Langley%E2%80%99s_Adventitious_Angles
I uploaded my solution
LoL, that is actually more complicated than needed, I will send my solution tommorow.
Вчитување...
Вчитување...
|